2011年中招考試:《初中數(shù)學(xué)》競(jìng)賽講座(6)
競(jìng)賽專題講座06
-平面幾何四個(gè)重要定理
四個(gè)重要定理:
梅涅勞斯(Menelaus)定理(梅氏線)
△ABC的三邊BC、CA、AB或其延長(zhǎng)線上有點(diǎn)P、Q、R,則P、Q、R共線的充要條件是 。
塞瓦(Ceva)定理(塞瓦點(diǎn))
△ABC的三邊BC、CA、AB上有點(diǎn)P、Q、R,則AP、BQ、CR共點(diǎn)的充要條件是 。
托勒密(Ptolemy)定理
四邊形的兩對(duì)邊乘積之和等于其對(duì)角線乘積的充要條件是該四邊形內(nèi)接于一圓。
西姆松(Simson)定理(西姆松線)
從一點(diǎn)向三角形的三邊所引垂線的垂足共線的充要條件是該點(diǎn)落在三角形的外接圓上。
例題:
1. 設(shè)AD是△ABC的邊BC上的中線,直線CF交AD于F。求證: 。
【分析】CEF截△ABD→ (梅氏定理)
【評(píng)注】也可以添加輔助線證明:過(guò)A、B、D之一作CF的平行線。
2. 過(guò)△ABC的重心G 的直線分別交AB、AC于E、F,交CB于D。
求證: 。
【分析】連結(jié)并延長(zhǎng)AG交BC于M,則M為BC的中點(diǎn)。
DEG截△ABM→ (梅氏定理)
DGF截△ACM→ (梅氏定理)
∴ = = =1
【評(píng)注】梅氏定理
3. D、E、F分別在△ABC的BC、CA、AB邊上,
,AD、BE、CF交成△LMN。
求S△LMN。
【分析】
【評(píng)注】梅氏定理
4. 以△ABC各邊為底邊向外作相似的等腰△BCE、△CAF、△ABG。求證:AE、BF、CG相交于一點(diǎn)。
【分析】
【評(píng)注】塞瓦定理
5. 已知△ABC中,∠B=2∠C。求證:AC2=AB2+AB·BC。
【分析】過(guò)A作BC的平行線交△ABC的外接圓于D,連結(jié)BD。則 CD=DA=AB,AC=BD。
由托勒密定理,AC·BD=AD·BC+CD·AB。
【評(píng)注】托勒密定理
6. 已知正七邊形A1A2A3A4A5A6A7。
求證: 。(第21屆全蘇數(shù)學(xué)競(jìng)賽)
【分析】
【評(píng)注】托勒密定理
7. △ABC的BC邊上的高AD的延長(zhǎng)線交外接圓于P,作PE⊥AB于E,延長(zhǎng)ED交AC延長(zhǎng)線于F。
求證:BC·EF=BF·CE+BE·CF。
【分析】
【評(píng)注】西姆松定理(西姆松線)
8. 正六邊形ABCDEF的對(duì)角線AC、CE分別被內(nèi)分點(diǎn)M、N分成的比 為AM:AC=CN:CE=k,且B、M、N共線。求k。(23-IMO-5)
【分析】
【評(píng)注】面積法
9. O為△ABC內(nèi)一點(diǎn),分別以da、db、dc表示O到BC、CA、AB 的距離,以Ra、Rb、Rc表示O到A、B、C的距離。
求證:(1)a·Ra≥b·db+c·dc;
(2) a·Ra≥c·db+b·dc;
(3) Ra+Rb+Rc≥2(da+db+dc)。
【分析】
【評(píng)注】面積法
10.△ABC中,H、G、O分別為垂心、重心、外心。
求證:H、G、O三點(diǎn)共線,且HG=2GO。(歐拉線)
【分析】
【評(píng)注】同一法
11.△ABC中,AB=AC,AD⊥BC于D,BM、BN三等分∠ABC,與AD相交于M、N,延長(zhǎng)CM交AB于E。
求證:MB//NE。
【分析】
【評(píng)注】對(duì)稱變換
相關(guān)推薦:·2021中考語(yǔ)文閱讀理解最全的33套答題公式 (2020-11-10 17:20:05)
·2020中考生物知識(shí)點(diǎn)結(jié)構(gòu)圖分類整理:健康的生活 (2019-11-8 14:54:53)
·2020中考生物知識(shí)點(diǎn)結(jié)構(gòu)圖分類整理:生物技術(shù) (2019-11-8 14:53:20)
·2020中考生物知識(shí)點(diǎn)結(jié)構(gòu)圖分類整理:生物的多樣性 (2019-11-8 14:50:27)
·2020中考生物知識(shí)點(diǎn)結(jié)構(gòu)圖分類整理:生物的生殖發(fā)育與遺 (2019-11-8 14:48:17)
2022年海南中考地理真題及答案已公布
2022年海南中考生物真題及答案已公布
2022年海南中考?xì)v史真題及答案已公布
2022年海南中考政治真題及答案已公布
2022年海南中考化學(xué)真題及答案已公布
2022年海南中考物理真題及答案已公布
2022年海南中考英語(yǔ)真題及答案已公布
2022年海南中考數(shù)學(xué)真題及答案已公布
2022年海南中考語(yǔ)文真題及答案已公布
2022年福建漳州中考成績(jī)查詢?nèi)肟谝验_通
2022廣東汕尾中考成績(jī)7月13日公布
2022年黑龍江齊齊哈爾中考成績(jī)查詢?nèi)肟谝?/a>
2022年黑龍江哈爾濱中考成績(jī)查詢?nèi)肟谝验_
2022年安徽亳州中考成績(jī)7月2日公布
2022年安徽銅陵中考成績(jī)查詢?nèi)肟谝验_通 點(diǎn)
2022年福建廈門中考成績(jī)查詢?nèi)肟谝验_通 點(diǎn)
2022寧夏銀川中考成績(jī)查詢?nèi)肟谝验_通 點(diǎn)擊
2022年吉安市中考成績(jī)查詢?nèi)肟谝验_通 點(diǎn)擊
國(guó)家 | 北京 | 天津 | 上海 | 重慶 |
河北 | 山西 | 遼寧 | 吉林 | 江蘇 |
浙江 | 安徽 | 福建 | 江西 | 山東 |
河南 | 湖北 | 湖南 | 廣東 | 廣西 |
海南 | 四川 | 貴州 | 云南 | 西藏 |
陜西 | 甘肅 | 寧夏 | 青海 | 新疆 |
黑龍江 | 內(nèi)蒙古 | 更多 |
·執(zhí)業(yè)醫(yī)師考試培訓(xùn) 試聽 ·經(jīng)濟(jì)師考試培訓(xùn) 試聽
·執(zhí)業(yè)藥師考試培訓(xùn) 試聽 ·報(bào)關(guān)員考試培訓(xùn) 試聽
·銀行從業(yè)考試培訓(xùn) 試聽 ·會(huì)計(jì)證考試培訓(xùn) 試聽
·證券從業(yè)考試培訓(xùn) 試聽 ·華圖公務(wù)員培訓(xùn) 試聽
·二級(jí)建造師考試培訓(xùn) 試聽 ·公務(wù)員培訓(xùn) 網(wǎng)校 試聽
·一級(jí)建造師考試培訓(xùn) 試聽 ·結(jié)構(gòu)師考試培訓(xùn) 試聽
·注冊(cè)建筑師考試培訓(xùn) 試聽 ·造價(jià)師考試培訓(xùn) 試聽
·質(zhì)量資格考試培訓(xùn) 試聽 ·咨詢師考試培訓(xùn) 試聽
·衛(wèi)生職稱考試培訓(xùn) 試聽 ·監(jiān)理師考試培訓(xùn) 試聽
·報(bào)關(guān)員考試培訓(xùn) 試聽 ·經(jīng)濟(jì)師考試培訓(xùn) 試聽
·銀行從業(yè)考試培訓(xùn) 試聽 ·會(huì)計(jì)證考試培訓(xùn) 試聽
·證券從業(yè)考試培訓(xùn) 試聽 ·注冊(cè)會(huì)計(jì)師培訓(xùn) 試聽
·期貨從業(yè)考試培訓(xùn) 試聽 ·統(tǒng)計(jì)師考試培訓(xùn) 試聽
·國(guó)際商務(wù)師考試培訓(xùn) 試聽 ·稅務(wù)師考試培訓(xùn) 試聽
·人力資源師考試培訓(xùn) 試聽 ·評(píng)估師考試培訓(xùn) 試聽
·管理咨詢師考試培訓(xùn) 試聽 ·審計(jì)師考試培訓(xùn) 試聽
·報(bào)檢員考試培訓(xùn) 試聽 ·高級(jí)會(huì)計(jì)師考試培訓(xùn) 試聽
·外銷員考試培訓(xùn) 試聽 ·公務(wù)員 試聽 教育門戶
·二級(jí)建造師考試培訓(xùn) 試聽 ·招標(biāo)師考試培訓(xùn) 試聽
·造價(jià)師考試培訓(xùn) 試聽 ·物業(yè)管理師考試培訓(xùn) 試聽
·監(jiān)理師考試培訓(xùn) 試聽 ·設(shè)備監(jiān)理師考試培訓(xùn) 試聽
·安全師考試培訓(xùn) 試聽 ·巖土工程師考試培訓(xùn) 試聽
·咨詢師考試培訓(xùn) 試聽 ·投資項(xiàng)目管理師培訓(xùn) 試聽
·結(jié)構(gòu)師考試培訓(xùn) 試聽 ·公路監(jiān)理師考試培訓(xùn) 試聽
·建筑師考試培訓(xùn) 試聽 ·衛(wèi)生資格考試培訓(xùn) 試聽
·質(zhì)量資格考試培訓(xùn) 試聽 ·執(zhí)業(yè)藥師考試培訓(xùn) 試聽
·造價(jià)員考試培訓(xùn) 試聽 ·執(zhí)業(yè)醫(yī)師考試培訓(xùn) 試聽