2011年中招考試:《初中數(shù)學(xué)》競(jìng)賽講座(18)
(3)簡(jiǎn)化類比
簡(jiǎn)化類比,就是將原命題類比到比原命題簡(jiǎn)單的類比命題,通過(guò)類比命題解決思路和方法的啟發(fā),尋求原命題的解決思路與方法.比如可先將多元問(wèn)題類比為少元問(wèn)題,高次問(wèn)題類比到低次問(wèn)題,普遍問(wèn)題類比為特殊問(wèn)題等.
【例4】已知xi≥0(i=1,2,…,n),且xl+x2+…+xn=1。
求證:1≤ + +…+ ≤ .
【分析】我們可先把它類比為一簡(jiǎn)單的類比題:“已知xl≥0,x2≥0,且xl+x2 =1,求證1≤ + ≤ ”.本類比題的證明思路為:∵2 ≤xl+x2=l,∴0≤2 ≤1,則1≤xl+x2+2 ≤2,即1≤( + )2≤2,∴1≤ + ≤ .這一證明過(guò)程中用到了基本不等式和配方法.這正是要尋找的證明原命題的思路和方法.
證明:由基本不等式有0≤2 ≤xi+xj,則
0≤2 ≤(n-1)( xl+x2+…+xn)=n-1
∴1≤xl+x2+…+xn +2 ≤n,即1≤( + +…+ )2≤n
∴1≤ + +…+ ≤ .
所謂歸納,是指通過(guò)對(duì)特例的分析來(lái)引出普遍結(jié)論的一種推理形式.它由推理的前提和結(jié)論兩部分構(gòu)成:前提是若干已知的個(gè)別事實(shí),是個(gè)別或特殊的判斷、陳述,結(jié)論是從前提中通過(guò)推理而獲得的猜想,是普遍性的陳述、判斷.其思維模式是:設(shè)Mi(i=1,2,…,n)是要研究對(duì)象M的特例或子集,若Mi(i=1,2,…,n)具有性質(zhì)P,則由此猜想M也可能具有性質(zhì)P.
如果 =M,這時(shí)的歸納法稱為完全歸納法.由于它窮盡了被研究對(duì)象的一切特例,因而結(jié)論是正確可靠的.完全歸納法可以作為論證的方法,它又稱為枚舉歸納法.
如果 是M的真子集,這時(shí)的歸納法稱為不完全歸納法.由于不完全歸納法沒(méi)有窮盡全部被研究的對(duì)象,得出的結(jié)論只能算猜想,結(jié)論的正確與否有待進(jìn)一步證明或舉反例.
本節(jié)主要介紹如何運(yùn)用不完全歸納法獲得猜想,對(duì)于完全歸納法,將在以后結(jié)合有關(guān)內(nèi)容(如分類法)進(jìn)行講解.
【例5】證明:任何面積等于1的凸四邊形的周長(zhǎng)及兩條對(duì)角線的長(zhǎng)度之和不小于4十 .
【分析】四邊形的周長(zhǎng)和對(duì)角線的長(zhǎng)度和混在一起令人棘手,我們可以從特例考察起:先考慮面積為1的正方形,其周長(zhǎng)恰為4,對(duì)角錢之和為2 即 .其次考察面積為1的菱形,若兩對(duì)角線長(zhǎng)記為l1、l2,那么菱形面積S= l1·l2,知
l1+ l2≥2 =2 = ,菱形周長(zhǎng): l=4 ≥2 =4。
由此,可以猜想:對(duì)一般的凸四邊形也可將其周長(zhǎng)和對(duì)角線長(zhǎng)度和分開(kāi)考慮.
【證明】設(shè)ABCD為任意一個(gè)面積為1的凸四邊形,其有關(guān)線段及角標(biāo)如圖.則
SABCD= (eg+gf+fh+he)sinα
≤ (e+f)(g+h)≤ ,
∴e+f+g+h≥2 ,即對(duì)角線長(zhǎng)度之和不小于 .
∴a+b+c+d≥4,即周長(zhǎng)不小于4.
綜上所述,結(jié)論得證,
【例 6】在一直線上從左到右依次排列著 1988個(gè)點(diǎn)P1,P2,…,P1988,且Pk是線段Pk-1Pk+1的k等分點(diǎn)中最靠近Pk+1的那個(gè)點(diǎn)(2≤k≤1988),P1P2=1,
P1987 P1988=l.求證:2l<3-1984。
【分析】本題初看復(fù)雜,難以入手.不妨先從特殊值出發(fā),通過(guò)特殊值的計(jì)算,以便分析、歸納出一般性的規(guī)律.
當(dāng)k=1時(shí),P1P2=1(已知);當(dāng)k= 2時(shí), P2是P1P3的中點(diǎn),故P2P3= P1P2= 1;當(dāng)k=3時(shí), P3是P2P4的三等分點(diǎn)中最靠近的那個(gè)分點(diǎn),即P3P4= P2P4= ( P2P3+ P3P4) = P2P3+ P3P4,故P3P4= P2P3= ①
由此可推得4 P5= × ②,P5P6= × × ③
由①、②、③,可歸納以下猜想:
PkPk+1= Pk-1Pk。
【證明】
于是有:
令k=1987,則有
故2l<3-1984。
相關(guān)推薦:·2021中考語(yǔ)文閱讀理解最全的33套答題公式 (2020-11-10 17:20:05)
·2020中考生物知識(shí)點(diǎn)結(jié)構(gòu)圖分類整理:健康的生活 (2019-11-8 14:54:53)
·2020中考生物知識(shí)點(diǎn)結(jié)構(gòu)圖分類整理:生物技術(shù) (2019-11-8 14:53:20)
·2020中考生物知識(shí)點(diǎn)結(jié)構(gòu)圖分類整理:生物的多樣性 (2019-11-8 14:50:27)
·2020中考生物知識(shí)點(diǎn)結(jié)構(gòu)圖分類整理:生物的生殖發(fā)育與遺 (2019-11-8 14:48:17)
2022年海南中考地理真題及答案已公布
2022年海南中考生物真題及答案已公布
2022年海南中考?xì)v史真題及答案已公布
2022年海南中考政治真題及答案已公布
2022年海南中考化學(xué)真題及答案已公布
2022年海南中考物理真題及答案已公布
2022年海南中考英語(yǔ)真題及答案已公布
2022年海南中考數(shù)學(xué)真題及答案已公布
2022年海南中考語(yǔ)文真題及答案已公布
2022年福建漳州中考成績(jī)查詢?nèi)肟谝验_(kāi)通
2022廣東汕尾中考成績(jī)7月13日公布
2022年黑龍江齊齊哈爾中考成績(jī)查詢?nèi)肟谝?/a>
2022年黑龍江哈爾濱中考成績(jī)查詢?nèi)肟谝验_(kāi)
2022年安徽亳州中考成績(jī)7月2日公布
2022年安徽銅陵中考成績(jī)查詢?nèi)肟谝验_(kāi)通 點(diǎn)
2022年福建廈門(mén)中考成績(jī)查詢?nèi)肟谝验_(kāi)通 點(diǎn)
2022寧夏銀川中考成績(jī)查詢?nèi)肟谝验_(kāi)通 點(diǎn)擊
2022年吉安市中考成績(jī)查詢?nèi)肟谝验_(kāi)通 點(diǎn)擊
國(guó)家 | 北京 | 天津 | 上海 | 重慶 |
河北 | 山西 | 遼寧 | 吉林 | 江蘇 |
浙江 | 安徽 | 福建 | 江西 | 山東 |
河南 | 湖北 | 湖南 | 廣東 | 廣西 |
海南 | 四川 | 貴州 | 云南 | 西藏 |
陜西 | 甘肅 | 寧夏 | 青海 | 新疆 |
黑龍江 | 內(nèi)蒙古 | 更多 |
·執(zhí)業(yè)醫(yī)師考試培訓(xùn) 試聽(tīng) ·經(jīng)濟(jì)師考試培訓(xùn) 試聽(tīng)
·執(zhí)業(yè)藥師考試培訓(xùn) 試聽(tīng) ·報(bào)關(guān)員考試培訓(xùn) 試聽(tīng)
·銀行從業(yè)考試培訓(xùn) 試聽(tīng) ·會(huì)計(jì)證考試培訓(xùn) 試聽(tīng)
·證券從業(yè)考試培訓(xùn) 試聽(tīng) ·華圖公務(wù)員培訓(xùn) 試聽(tīng)
·二級(jí)建造師考試培訓(xùn) 試聽(tīng) ·公務(wù)員培訓(xùn) 網(wǎng)校 試聽(tīng)
·一級(jí)建造師考試培訓(xùn) 試聽(tīng) ·結(jié)構(gòu)師考試培訓(xùn) 試聽(tīng)
·注冊(cè)建筑師考試培訓(xùn) 試聽(tīng) ·造價(jià)師考試培訓(xùn) 試聽(tīng)
·質(zhì)量資格考試培訓(xùn) 試聽(tīng) ·咨詢師考試培訓(xùn) 試聽(tīng)
·衛(wèi)生職稱考試培訓(xùn) 試聽(tīng) ·監(jiān)理師考試培訓(xùn) 試聽(tīng)
·報(bào)關(guān)員考試培訓(xùn) 試聽(tīng) ·經(jīng)濟(jì)師考試培訓(xùn) 試聽(tīng)
·銀行從業(yè)考試培訓(xùn) 試聽(tīng) ·會(huì)計(jì)證考試培訓(xùn) 試聽(tīng)
·證券從業(yè)考試培訓(xùn) 試聽(tīng) ·注冊(cè)會(huì)計(jì)師培訓(xùn) 試聽(tīng)
·期貨從業(yè)考試培訓(xùn) 試聽(tīng) ·統(tǒng)計(jì)師考試培訓(xùn) 試聽(tīng)
·國(guó)際商務(wù)師考試培訓(xùn) 試聽(tīng) ·稅務(wù)師考試培訓(xùn) 試聽(tīng)
·人力資源師考試培訓(xùn) 試聽(tīng) ·評(píng)估師考試培訓(xùn) 試聽(tīng)
·管理咨詢師考試培訓(xùn) 試聽(tīng) ·審計(jì)師考試培訓(xùn) 試聽(tīng)
·報(bào)檢員考試培訓(xùn) 試聽(tīng) ·高級(jí)會(huì)計(jì)師考試培訓(xùn) 試聽(tīng)
·外銷員考試培訓(xùn) 試聽(tīng) ·公務(wù)員 試聽(tīng) 教育門(mén)戶
·二級(jí)建造師考試培訓(xùn) 試聽(tīng) ·招標(biāo)師考試培訓(xùn) 試聽(tīng)
·造價(jià)師考試培訓(xùn) 試聽(tīng) ·物業(yè)管理師考試培訓(xùn) 試聽(tīng)
·監(jiān)理師考試培訓(xùn) 試聽(tīng) ·設(shè)備監(jiān)理師考試培訓(xùn) 試聽(tīng)
·安全師考試培訓(xùn) 試聽(tīng) ·巖土工程師考試培訓(xùn) 試聽(tīng)
·咨詢師考試培訓(xùn) 試聽(tīng) ·投資項(xiàng)目管理師培訓(xùn) 試聽(tīng)
·結(jié)構(gòu)師考試培訓(xùn) 試聽(tīng) ·公路監(jiān)理師考試培訓(xùn) 試聽(tīng)
·建筑師考試培訓(xùn) 試聽(tīng) ·衛(wèi)生資格考試培訓(xùn) 試聽(tīng)
·質(zhì)量資格考試培訓(xùn) 試聽(tīng) ·執(zhí)業(yè)藥師考試培訓(xùn) 試聽(tīng)
·造價(jià)員考試培訓(xùn) 試聽(tīng) ·執(zhí)業(yè)醫(yī)師考試培訓(xùn) 試聽(tīng)