參考答案:
1.A
2.B 解析:利用反推法解答, 函數(shù)y=(x-1)2-4的頂點(diǎn)坐標(biāo)為(1,-4),其向左平移2個(gè)單位長(zhǎng)度,再向上平移3個(gè)單位長(zhǎng)度,得到函數(shù)y=x2+bx+c,又∵1-2=-1,-4+3=-1,∴平移前的函數(shù)頂點(diǎn)坐標(biāo)為(-1,-1),函數(shù)解析式為y=(x+1)2-1,即y=x2+2x,∴b=2,c=0.
3.D 4.C 5.C 6.B
7.k=0或k=-1 8.y=x2+1(答案不唯一)
9.解:(1)∵拋物線y=-x2+bx+c經(jīng)過(guò)點(diǎn)A(3,0),B(-1,0),
∴拋物線的解析式為y=-(x-3)(x+1),
即y=-x2+2x+3.
(2)∵y=-x2+2x+3=-(x-1)2+4,
∴拋物線的頂點(diǎn)坐標(biāo)為(1,4).
10.B 11.①③④
12.解:(1)將點(diǎn)O(0,0)代入,解得m=±1,
二次函數(shù)關(guān)系式為y=x2+2x或y=x2-2x.
(2)當(dāng)m=2時(shí),y=x2-4x+3=(x-2)2-1,
∴D(2,-1).當(dāng)x=0時(shí),y=3,∴C(0,3).
(3)存在.接連接C,D交x軸于點(diǎn)P,則點(diǎn)P為所求.
由C(0,3),D(2,-1)求得直線CD為y=-2x+3.
當(dāng)y=0時(shí),x=32,∴P32,0.
13.解:(1)將M(-2,-2)代入拋物線解析式,得
-2=1a(-2-2)(-2+a),
解得a=4.
(2)①由(1),得y=14(x-2)(x+4),
當(dāng)y=0時(shí),得0=14(x-2)(x+4),
解得x1=2,x2=-4.
∵點(diǎn)B在點(diǎn)C的左側(cè),∴B(-4,0),C(2,0).
當(dāng)x=0時(shí),得y=-2,即E(0,-2).
∴S△BCE=12×6×2=6.
、谟蓲佄锞解析式y(tǒng)=14(x-2)(x+4),得對(duì)稱軸為直線x=-1,
根據(jù)C與B關(guān)于拋物線對(duì)稱軸x=-1對(duì)稱,連接BE,與對(duì)稱軸交于點(diǎn)H,即為所求.
設(shè)直線BE的解析式為y=kx+b,
將B(-4,0)與E(0,-2)代入,得-4k+b=0,b=-2,
解得k=-12,b=-2.∴直線BE的解析式為y=-12x-2.
將x=-1代入,得y=12-2=-32,
則點(diǎn)H-1,-32.
14.(1)證明:∵二次函數(shù)y=mx2+nx+p圖象的頂點(diǎn)橫坐標(biāo)是2,
∴拋物線的對(duì)稱軸為x=2,即-n2m=2,
化簡(jiǎn),得n+4m=0.
(2)解:∵二次函數(shù)y=mx2+nx+p與x軸交于A(x1,0),B(x2,0),x1<0
∴OA=-x1,OB=x2,x1+x2=-nm,x1•x2=pm.
令x=0,得y=p,∴C(0,p).∴OC=|p|.
由三角函數(shù)定義,得tan∠CAO=OCOA=-|p|x1,tan∠CBO=OCOB=|p|x2.
∵tan∠CAO-tan∠CBO=1,即-|p|x1-|p|x2=1.
化簡(jiǎn),得x1+x2x1•x2=-1|p|.
將x1+x2=-nm,x1•x2=pm代入,得-nmpm=-1|p|化簡(jiǎn),得⇒n=p|p|=±1.
由(1)知n+4m=0,
∴當(dāng)n=1時(shí),m=-14;當(dāng)n=-1時(shí),m=14.
∴m,n的值為:m=14,n=-1(此時(shí)拋物線開口向上)或m=-14,n=1(此時(shí)拋物線開口向下).
(3)解:由(2)知,當(dāng)p>0時(shí),n=1,m=-14,
∴拋物線解析式為:y=-14x2+x+p.
聯(lián)立拋物線y=-14x2+x+p與直線y=x+3解析式得到-14x2+x+p=x+3,
化簡(jiǎn),得x2-4(p-3)=0.
相關(guān)推薦:
各省市2017年中考時(shí)間及體育中考時(shí)間匯總 | 關(guān)注微信獲取考試時(shí)間
2017年中考化學(xué)各單元復(fù)習(xí)知識(shí)點(diǎn)匯總
·2021年中考英語(yǔ)備考練習(xí)題及答案(12) (2021-5-25 16:53:44)
·2021年中考英語(yǔ)備考練習(xí)題及答案(11) (2021-5-25 16:49:08)
·2019年浙江中考語(yǔ)文模擬試題 (2019-6-10 16:56:04)
·2019年上海中考語(yǔ)文模擬試題 (2019-6-10 16:55:04)
·2019年安徽中考語(yǔ)文模擬試卷 (2019-6-10 16:54:11)
2022年海南中考地理真題及答案已公布
2022年海南中考生物真題及答案已公布
2022年海南中考?xì)v史真題及答案已公布
2022年海南中考政治真題及答案已公布
2022年海南中考化學(xué)真題及答案已公布
2022年海南中考物理真題及答案已公布
2022年海南中考英語(yǔ)真題及答案已公布
2022年海南中考數(shù)學(xué)真題及答案已公布
2022年海南中考語(yǔ)文真題及答案已公布
2022年福建漳州中考成績(jī)查詢?nèi)肟谝验_通
2022廣東汕尾中考成績(jī)7月13日公布
2022年黑龍江齊齊哈爾中考成績(jī)查詢?nèi)肟谝?/a>
2022年黑龍江哈爾濱中考成績(jī)查詢?nèi)肟谝验_
2022年安徽亳州中考成績(jī)7月2日公布
2022年安徽銅陵中考成績(jī)查詢?nèi)肟谝验_通 點(diǎn)
2022年福建廈門中考成績(jī)查詢?nèi)肟谝验_通 點(diǎn)
2022寧夏銀川中考成績(jī)查詢?nèi)肟谝验_通 點(diǎn)擊
2022年吉安市中考成績(jī)查詢?nèi)肟谝验_通 點(diǎn)擊
國(guó)家 | 北京 | 天津 | 上海 | 重慶 |
河北 | 山西 | 遼寧 | 吉林 | 江蘇 |
浙江 | 安徽 | 福建 | 江西 | 山東 |
河南 | 湖北 | 湖南 | 廣東 | 廣西 |
海南 | 四川 | 貴州 | 云南 | 西藏 |
陜西 | 甘肅 | 寧夏 | 青海 | 新疆 |
黑龍江 | 內(nèi)蒙古 | 更多 |
·執(zhí)業(yè)醫(yī)師考試培訓(xùn) 試聽 ·經(jīng)濟(jì)師考試培訓(xùn) 試聽
·執(zhí)業(yè)藥師考試培訓(xùn) 試聽 ·報(bào)關(guān)員考試培訓(xùn) 試聽
·銀行從業(yè)考試培訓(xùn) 試聽 ·會(huì)計(jì)證考試培訓(xùn) 試聽
·證券從業(yè)考試培訓(xùn) 試聽 ·華圖公務(wù)員培訓(xùn) 試聽
·二級(jí)建造師考試培訓(xùn) 試聽 ·公務(wù)員培訓(xùn) 網(wǎng)校 試聽
·一級(jí)建造師考試培訓(xùn) 試聽 ·結(jié)構(gòu)師考試培訓(xùn) 試聽
·注冊(cè)建筑師考試培訓(xùn) 試聽 ·造價(jià)師考試培訓(xùn) 試聽
·質(zhì)量資格考試培訓(xùn) 試聽 ·咨詢師考試培訓(xùn) 試聽
·衛(wèi)生職稱考試培訓(xùn) 試聽 ·監(jiān)理師考試培訓(xùn) 試聽
·報(bào)關(guān)員考試培訓(xùn) 試聽 ·經(jīng)濟(jì)師考試培訓(xùn) 試聽
·銀行從業(yè)考試培訓(xùn) 試聽 ·會(huì)計(jì)證考試培訓(xùn) 試聽
·證券從業(yè)考試培訓(xùn) 試聽 ·注冊(cè)會(huì)計(jì)師培訓(xùn) 試聽
·期貨從業(yè)考試培訓(xùn) 試聽 ·統(tǒng)計(jì)師考試培訓(xùn) 試聽
·國(guó)際商務(wù)師考試培訓(xùn) 試聽 ·稅務(wù)師考試培訓(xùn) 試聽
·人力資源師考試培訓(xùn) 試聽 ·評(píng)估師考試培訓(xùn) 試聽
·管理咨詢師考試培訓(xùn) 試聽 ·審計(jì)師考試培訓(xùn) 試聽
·報(bào)檢員考試培訓(xùn) 試聽 ·高級(jí)會(huì)計(jì)師考試培訓(xùn) 試聽
·外銷員考試培訓(xùn) 試聽 ·公務(wù)員 試聽 教育門戶
·二級(jí)建造師考試培訓(xùn) 試聽 ·招標(biāo)師考試培訓(xùn) 試聽
·造價(jià)師考試培訓(xùn) 試聽 ·物業(yè)管理師考試培訓(xùn) 試聽
·監(jiān)理師考試培訓(xùn) 試聽 ·設(shè)備監(jiān)理師考試培訓(xùn) 試聽
·安全師考試培訓(xùn) 試聽 ·巖土工程師考試培訓(xùn) 試聽
·咨詢師考試培訓(xùn) 試聽 ·投資項(xiàng)目管理師培訓(xùn) 試聽
·結(jié)構(gòu)師考試培訓(xùn) 試聽 ·公路監(jiān)理師考試培訓(xùn) 試聽
·建筑師考試培訓(xùn) 試聽 ·衛(wèi)生資格考試培訓(xùn) 試聽
·質(zhì)量資格考試培訓(xùn) 試聽 ·執(zhí)業(yè)藥師考試培訓(xùn) 試聽
·造價(jià)員考試培訓(xùn) 試聽 ·執(zhí)業(yè)醫(yī)師考試培訓(xùn) 試聽